
AMPLITUDE BOUNDS IN LADDER GRAPH APPROXIMATION

the strong coupling limit a bound on n(0) which grows
with the sggare root of g'. We now wish to argue that
this behavior for large g' is in fact plausible for the true
rr(0) and that our bound is therefore a good one, apart
from constant factors, in the limit of large g'.

We consider the analogy to the Vukawa potential
Here the effective potential, including the centrifugal
barrier term, is

V,tr ———(}/r) e-&"+Ln(n+1)/r'j.

For fixed binding energy the ratio n( r+r1)/X clearly
cannot increase indefinitely as I, —+~ because V,ff
would then eventually become repulsive for all values
of r and could not maintain a fixed bound state. Simi-
larly n(n+1)/X cannot decrease indelnitely towards
zero as A,

—+00 because V,ff would then grow more and
more attractive over an increasingly large range of r.
In fact it is easy to conclude that, in order for a fixed

bound state to be maintained, it is necessary that

n(n+ 1) 1
hm — =— e=- 2 7183 --

pe

This corresponds to the situation where the two zeros
of V,ff approach each other as ) —+, while the depth
of the potential between them grows indefinitely. This
property is quite general": for any attractive potential
that is less singular than r ' at the origin and that falls
off more rapidly than r ' at infinity, n(X) must satisfy

n(n+1)
lim = const&0,
) -+oO

the constant depending on the shape of the potential.

"This has been noted independently by R. Blankenbecler
(private communication).
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With the aid of some operator algebra the Lippmann-Schwinger integral equations for three-body tran-
sition amplitudes are recast in a form which involves two-body transition operators rather than two-body
potentials. These equations, which are uncoupled and apply to all channels, are ideally suited to be the basis
for approximation schemes, of the impulse approximation type, which have the distinctive feature of pre-
serving unitarity. Two such approximations are described. With either of these as the leading term, a method
of successive approximations is developed which yields an expansion for the exact amplitude whose con-
vergence properties are expected to be considerablyimproved over the usual Born and multiple-scattering ex-
pansions. At high energies and low momentum transfers we obtain a unitary version of the strip approxima-
tion. Here the integral equation is quite tractable and represents the nondispersion-theoretic analog of multi-
particle /l//D techniques which have been applied recently to Ar-/V and s.-/V reactions.

i. INTRODUCTION
' 'N a previous paper' we have formulated a scheme for
~ - calculating three-body scattering amplitudes which
generalizes the well-known impulse approximation by
taking into account the constraints imposed, by unitar-
ity; effectively, one has summed an infinite set of dia-
grams of the impulse approximation type. A generalized.
/V/D procedure was employed, in a model in which the
incident particle interacts with only one of the target
particles. An alternative to the X/D procedure which is
in fact much more convenient and direct, particularly
when none of the two-body potentials are ignored, will
be described here. We again obtain amplitudes which
satisfy a generalized unitarity relation which, however,
can be derived without reliance on the multiple scat-
tering expansions employed in Ref. 1. In fact, in Sec. 2,
we derive the exact integral equations whose iterations

* Supported by the National Science Foundation.' L. Rosenberg, Phys. Rev. 131, 8/4 (1963).

give rise to the multiple scattering expansions. These
integral equations are essentially the Lippmann-
Schwinger equations recast, with the aid of some oper-
ator algebra, into a form which involves the two-body
'1operator, rather than the two-body potential. Such a
reformulation is particularly desirable in the light of the
observation' that the ordinary Born expansion of the
three-body amplitudes in powers of the two-body po-
tentials is essentially useless as a calculational tool.
Similar T-operator integral equations were obtained
earlier by Fad.deev. ' In the form given here they lend.

2 R. Aaron, R. D. Amado, and B. %'. Lee, Phys. Rev. 121, 319
(1961).

s L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961)j.These
equations are highly coupled; they take the form of matrix inetgral
equations. A more compact form, applicable to many-particle
scattering problems, has been developed by S. steinberg, Phys.
Rev. 133, 8232 (1964), although the two-body potential still ap-
pears in steinberg's formulation. Our equations, restricted here to
the three-body case, combine the advantages of being uncoupled
and potential-independent.
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themselves rather more directly to the unitary approxi-
mation techniques which we wish to develop.

The generalization, to the case where none of the
potentials vanish, of the unitary impulse approximation
of Ref. 1 is formulated in Sec. 3A. The idea is simply to
assume that the pair of particles which form the target
bound system interact in intermediate and final states
only when they are bound. It will be recalled that in
the ordinary impulse approximation all interactions
between the pair in intermediate states are ignored.
Formally, our result is achieved by approximating,
and thereby considerably simplifying, the propagator
which appears in the kernel of the integral equation.
It is shown directly, without recourse to X/D pro-
cedures, that unitarity is preserved (even when the
ordinary impulse approximation violates unitarity).
In another closely related method (described in Sec.
3B) the propagators are replaced by the forms appropri-
ate for a particular type of separable potential. The
unitarity of the resultant amplitudes is automatic since
the separable potentials are Hermitian. The integral
equations are particularly simple when the three
particles are identical.

These methods share the attractive feature that the
approximate integral equations are of the tzvo-body

I ippmann-Schwinger type (with a complex, energy-
dependent potential). Furthermore, since the exact
integral equations are known, it is possible to formulate
corrections in a systematic way. In particular, we
present a method of successive approximations in which
the amplitude in the (I—1)th stage serves as an optical
potential, in a two-body Lippmann-Schwinger equation,
for. the amplitude in the eth stage. This iterative tech-
nique, whose convergence properties have not been
studied, is based on a method developed by Feinberg
and Pais4 for use in a different problem.

Our approximate integral equations admit of further
simpli6cations, giving rise to a unitary version of the
strip approximation, ' in the domain of high energies
and low momentum transfers. In Sec. 3C we point out
the close relation between this result and the theory
developed by Baker and Blankenbecler' to take into
account inelastic effects in peripheral collision models.

2. DERIVATION OF THE INTEGRAL EQUATIONS

are given by the familiar expressions

T ~&+& —(@ V' @ &+l) (@ &+l V C, )

&3, p= &3, b, C, O

where

(2.1)

(&—E)+ '+'= (1~+V12+ V18+ V28 —E)+.&+&=0, (2.2)

(H E V—)4—„=0. (2.3)

E is the center-of-mass kinetic-energy operator and we
have introduced the notation

Vc V12+ V13 ql V5 V18+ V23 q

Vc V12+ V23 y Vc V12+ V13+ V28 ~

(2.4)

Channels a, b, and c are "two-body" channels; C cor-
responds to a state in which particles 2 and 3 are bound,
while the relative motion of the center of mass of the
bound system and particle 1 is described by a plane
wave. Similar definitions hold for C ~ and C„with ap-
propriate permutations of particle labels according to
Eqs. (2.4). All three particles are unbound and non-
interacting in channel o. We also dehne a channel d,
with Vg= V„ in which the three particles are unbound
although particles 2 and 3 interact through V~3. The
(somewhat unconventional) retention of this potential
in the de6nition of the three-body channel wave func-
tion Cq will be convenient in the following. It has the
consequence that T«differs from the full scattering amp-
litude T„, for three particles free in initial and final
states, by a "disconnected" part as shown explicitly
below. '

The two-body transition operators T;; are defined by

where

T,;&+& (E)= V;;+V;,G.&+& (E)T;,&+'(E)

= V;,+V;,G;;&+&(E)V;;,

G.&+&(E)= (E~2~—It)-1,

G,;&+& (E)= (E~'&—Z —V,")-1.

(2.5)

(2 6)

(2.7)

The relation
G;; = G.+G.T;,G.

will be useful in the following. It will be convenient to
introduce, in addition, the operators 6, de6ned, e.g.,
by means of eigenfunction expansions which we indicate
schematically as

We consider a model in which three distinguishable,
spinless particles interact by means of two-body local,
central potentials. The T-matrix elements of interest G (E)=S

I c'-&-& (E.))(c'-&-)(E-) I

(2.9)

3 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).
8 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).

aker and R. Elankenbecler, Phys. Rev. 128, 415 (1962).
The similarity between the Baker-Blankenbecler theory and our
unitary impulse approximation is not surprising since both are
suggested by the multiparticle E/D relations. It is our purpose
here to point out that the use of linear integral equations can serve
as a useful alternative to the N/D relations as a starting point for
generating approximation techniques. This point of view has also
been emphasized recently by R. D. Amado (see Ref. 12).

Here the sum over states, symbolized by S, is an ap-
propriately weighted integration over momentum vari-

We should, for completeness, display the boundary conditions
satisfied by the wave functions +p(+). In the interest of brevity we
do not do so here (see, however, Ref. 13).Information concerning
the momentum variables needed to complete the definition of the
channel wave functions is assumed to be absorbed in the channel
indices. We shall at times write C ( ~ to make this more explicit.
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dif)d(il = (C'd1f1, Ud@d(;i ) (2.25)
G28 ——G,+Gd. (2.10)

is evidently the difference between the true amplitude
and a disconnected part which describes the process in
which particles 2 and 3 interact and particle 1 is free.
No such disconnected, part can exist, for energy con-
serving reactions, if particles 2 and 3 are bound in
initial or final states so that'

It will be helpful in the following to have at our
disposal an operator identity which has previously ap-
peared (in perhaps slightly altered form) in the litera-
ture. ' A brief derivation is included here for the reader' s
convenience. Consider a scattering system whose state
vector 0'(+) satisfies the Lippmann-Schwinger equation T..=(C,&

—
& U„% &+&)

T .= (+,& ', VdCd&+&).

(2.26)
(2.11)@id:)—CyG(+l(g) V@i+l

G'+& (8)= (Eai 2) H+ —V)

(H V—Z)C —=0

(H—E)@1+& =0.

(2.27)with

We proceed by defining operators V„(+) and v „(+
according to

(2.12)

(2.13)
(2.28)9, (+)= U,+U G„(+)9„(+)so that

(2 14) and
(2.29)(+l —U +U G (k)r 161

ables for the state C . We have, accordingly, the Here
relation

A transition operator T and, a wave operator 0 may be
defined such that If, in Eq. (2.21), we choose

and

With the aid of Eq. (2.11), the relations

T= V+VGT,
T= VQ,

Q=1+GT,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

&aa= &aa+ &aa(G28 Go) &aa

&aa+ &aaGoT28Go+aa ~ (2.31)

The signi6cance of the operator V", lies in the relation

VA= V12+ V18, TA= 7a„GA=G28,
(2.30)

VB= V12+V18, TB= Tao) GB=Gop

we obtain

are easily verified. Now consid. er two different systems,
distinguished by the subscripts A and B. The identity

TA'+'= TA'+' —TBt' 'PQA —GA'+'TA'+' —1j
+.PQBti—1 —TBti—)G t1—l —1 jT (+) (2 2())

obviously holds since both bracketed terms vanish.
The identity we seek is obtained by rewriting Eq.
(2.20) in the form

TA(+l = TBt(—)+QBt(—l (V'A —VBt)QA(+l

+TBt(—)t GA1+) —G t(—l)T (+) (2 21)

where use has been made of Eq. (2.18). In the following
we assume that

K..C = V% (2.32)

which follows from Eq. (2.28) and the Lippmann-
Schwinger equation for O' . Therefore, the elastic
amplitude can be written as

(2.33)

It is seen from Eqs. (2.25)—(2.27) and Eq. (2.32) that
the inelastic amplitud. es can also be represented in
terms of V' as

(2.34)

(2.35)

Tdd —(@Id( ) q @di+)) (2 36)
t (—) —Q(+)Vt= V,

Tg —T
~B T23

UA U12+ U18+ U28

Va= V23,
6~=Ga=~. .

(2.22)
+aa 2 aa+ +aaGoT28Go&aa ~ (2.37)

In obtaining Eq. (2.35) we have made use of the re-

As a first application of Eq. (2.21.) we return to our ciprocity relation E., i &= '7..'+' which follows directly
model problem and make the choices from Eq. (2.21) with A=8. Similar reciprocity rela-

tions hold for the operators v and T;;. Consequently,
Eq. (2.31) may be written as

Ke 6nd immediately that

T(+)= T28(+l+Q28t( —) (U12+ V18)Q(+l (2 23)
so that

To(f)o(~)= (C'o(f)i @o(~l)

(@o(f1i T28C'& ('))+Td(f)d(') (2 )
See, e.g., H. A. Bethe, B. H. Brandow, and A. G. Petschek,

Phys. Rev. 129, 225 (1963).

Our task now is to replace Eq. (2.29) by a set of
equations which determine 7. but which do not involve
the potentials. Toward this end we introduce the
d.ecomposition

&aa= &2+&8 q (2.38)

2Fquation (2.26) (along with its time-reversed counterpart)
was derived by K. M. Watson, Phys. Rev. 88, 1163 (1952), as the
basis for his anal-state interaction theory.



LEONA R D ROSEN B ERG

with
Ts= Vis+ V»Goroo,

rs= Vis+ V12G.r.o.

It is easy to see that Eqs. (2.39) and
replaced by

T2= Tls+ T18Gor3

rs T12+——T12G.T2.

Thus, Eq. (2.41) may be written as

(2.39)

(2.40)

(2.40) may be

(2.41)

(2.42) ~ahab Va+b ~

We look for V b in the form

(2.49)

Here the operators 1"
p can be obtained as the solutions

of uncoupled linear integral equations in which the
operators T,;, rather than the two-body potentials,
appear; the wave functions C are obtained by solving
two-body problems. To see how this comes about we
first set n=a and P=b Ac.cording to Eq. (2.48) an
operator K b must be found such that

'Ts —V13+V13GoT13+ U13G.r8+ V»GoT»Gors
= Vi,+Ui,Go(T18+T18G,rs+rs)
= V„yV„G.(.,+.,). (2.43)

+ 3 V12+R V12+R2+R8

where E2 and E3 are to satisfy

(2.50)

In a similar manner the expressions for rs in Eqs. (2.40)
and (2.42) can be shown to be equivalent. The equations
can be simplified by a transformation to uncoupled form.
By combining Eqs. (2.41) and (2.42) we find that

E2C b V]3C

(Uis+Rs)C 3= Vis%3.

(2.51)

(2.52)

If, in add, ition, we introduce the operator R~ such that

T2= T2(1+GoT12) q

rs rs (1+G——.T»),
where f-2 and r3 satisfy

(2.44)

(2.45)

~ic'b= V2P b,

then the integral equation

+3——C 3+G12(Vis+ V23)%'3

(2.53)

(2.54)

T2= Tis+ TisG.T12G.T2, (2 46) leads to the relations

T3 T12+T12GoTisGors ~ (2.47)

In summary, Eqs. (2.46) and (2.47) are to be solved «r
rs and Ts, from which r„can be constructed; Eq. (2.31)
is then to be solved for E,. A knowledge of V", leads
not only to the elastic and break-up amplitudes Lsee
Eqs. (2.33)—(2.36)] but to the rearrangernent ampli-
tudes as well, as is shown below. It should be noted
that the kernels in Eqs. (2.31), (2.46), and (2.47) con-
tain no disconnected, parts so that Fredholm techniques
may be applied. This point is discussed in detail by
Weinberg', who devised a different method for separat-
ing off the disconnected parts.

The expression of the scattering operator V as the
sum of two parts, as in Eq. (2.31) has a simple interpre-
tation. The operator r, represents the sum of all dis-
tinct multiple scattering events, each described by
either T» or T~3, in which the incident particle strikes
one target particle, then the other, and then the erst
again, etc. The second part represents the add. itional
terms (sometimes called "potential" corrections in
discussions of the impulse approximation) which take
into account virtual collisions between the target
particles themselves. This representation appears to be
an id.eal starting point in a problem in which the impulse
apprOXimatiOn (r„replaCed by Tis+Tis) repreSentS a
fairly good erst approximation and one is looking for
corrections to it.

We now turn to a discussion of rearrangement colli-
sions and show that as a generalization of the preceding
discussion the amplitude T p, for any pair of entrance
and exit channels, can be represented as

T p= (C,V pCp). (2.48)

Ri = Vss+ V28G12(R1+R2) )

Rs= Vis+ V18G12(Ri+Rs) )

R3 V12G12 (R1+R2)

(2.55)

(2.56)

(2.57)

Rs = T12G.(Ri+Rs) . (2.60)

If, for example, one replaces T» in Eq. (2.58) by its form
given in Eq. (2.5) the resultant expression for Ri can,
by reapplication of Eq. (2.58) itself, and by use of
Eqs. (2.60) and (2.8), be reduced to that given in Eq.
(2.55). The algebraic details are omitted here. It might
be thought that our expression for V b is still not poten-
tial independent due to the appearance of V» in Eq.
(2.50). However, when the appropriate matrix element
is formed, explicit dependence on the potential can be
eliminated since the Born term

(C „V12C3)

can be expressed, in terms of the two-body bound-state
wave functions for the pairs (1,2) and (2,3)."By means
of additional algebraic manipulations it is easy to show
that Eqs. (2.58)—(2.60) imply the relations

R2= T2+T2GoT28 (1+GoR) q

R3 = T12Gos 2+ T3GoT23 (1+GoR) ~

"See, e.g., Eq. (4.22) of Ref. 1.

(2.61)

(2.62)

from which the E,may be determined. It is easily veri6ed
that Eqs. (2.55)—(2.57) can be written in the equivalent
form

Ri Tss+ T28G, (R2+——Rs) ) (2.58)

Rs ——Tis+ T18G,(Ri+R3), (2.59)
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r=—(1+Ti2G, )r2. (2.64)

Equations (2.31) and (2.63) may be used to verify the
alternate form

R= r+ V'„G,TibG,r+ K, G,T2b. (2.65)

Since operation of E on C b is always understood, and
since C b satisfies the eigenvalue equation

4 b(E) =Gb(E) Vig4b(E), (2.66)
we may write

&aaGoT2b EaaGoT——2bGoVi2 (2.67)

in Eq. (2.65). Finally, we have (recall Eq. (2.50)j
with

+ab rob+ ~aaGoT23Gorab yi

r.b=—Vu+r.

(2.68)

We note the equivalent form

Tab rab+raaGoT23Go+ab ~

It is clear that V b, should be defined as

+ba +abt

to ensure the relation

(4 b, V'b.4.) = Tb. .

(2.71)

(2.72)

In fact, with the aid of Eqs. (2.71) and (2.49) the left-
hand side of Eq. (2.72) can be written as

(V' b( )4b,4.)= (4'b( ', V.4.)
which, according to Eq. (2.1), is just Tb, .

Integral equations for the operators 1 p appropriate
for other pairs of entrance and exit channels are easily
d.educed from the equations given above by suitable
permutations of particle indices. Note that all the ampli-
tudes for inelastic and, rearrangement collisions can be
constructed (assuming knowledge of the 4 ) once the
elastic transition operators V' have been found. .

3. UNITARY APPROXIMATIONS

A. Unitary Impulse Approximation

The first approximation to be discussed is a generali-
zation of the unitary impulse approximation formulated
in Ref. 1. From the present point of view the approxi-
mation arises from a simple modification (in the spirit
of the ordinary impulse approximation) of the propa-
gator which appears in the integral equation for the
elastic amplitude T, . We begin by dehning a modified
scattering operator W, (') according to

Taa = raa+ ~aa Garaa
=r„+r,G,V'„(o), (3.1)

Therefore, by adding Eqs. (2.61) and (2.62) we see that
R is given implicitly by

R=r+r„G,T23+raaGoT2bGoR) (2.63)
with

which differs from Eq. (2.31) for 1'„by the replacement
G2b=G,+G~~G,+G,. This corresponds to ignoring
the interaction between particles 2 and 3 in continuum
intermediate states, but leaving it unaltered when the
pair is bound. This is of course just the essential feature
of the impulse approximation, extended here to inter-
mediate states in the scattering process. As we shall
show directly, it is this extension which allows for the
preservation of unitarity in the set of channels ((b,o).
(We have assumed that we are particularly interested
in elastic and break-up reactions for entrance channel
a. This accounts for the asymmetric appearance of
channel (b in our equations. ) The approximate scattering
amplitud, es are taken as

(&) = (@ ot" (O)@ ) (3.2)

(0) —(@ q (0)@ )

T,( )=b(4, V'."'4' ), n=b, c,
with V", (" and V', (" given by

+aa raa+ Taa Garaa y

+aa raa+raaGa+aa ~

(3 6)

(3.7)

(3.8)

(3 9)

It will be convenient to discuss the unitarity condi-
tions in terms of the operator relations

(+) q (—)

( )LG (+)—G (—)jg (+) (3 10)
~=a, b, c,d

which can be obtained directly from the integral equa-
tions which def(ne 9"„.Alternatively, Eq. (3.10) can
be inferred from the unitarity conditions for the scat-
tering amplitudes, viz. ,

——ImT.p
—— Q S,T „(„)*T,(„)))b(E—E.) . (3.11)

a, b, c,o

The symbol Sr, introduced previously in Eq (2.9), .
represents an integration over intermediate-state mo-
mentum variables. Matrix elements of Eq. (3.10) with
respect to the states C and C ~ give rise to "generalized, "
unitarity relations. They differ from the ordinary uni-
tarity relations of Eq. (3.11) in that branch cuts due to
initial- and final-state interactions of particl. es 2 and 3
are ignored, this being exactly compensated for by the
use of connected amplitudes. (Generalized unitarity
relations of a similar type have been proposed for rela-

(&) = (@ g (())@ ) (3.3)
((0 —(@ g (0)@ ) (3.4)
(()) —(@ g" (&)@ ) (3.5)

This is a consistent extension of our approximation
since we have ignored the interaction of the (2,3) pair
in continuum initial and final states as well. To com-
plete the approximation scheme we define the amplitudes
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tivistic scattering amplitudes by Blankenbecler. u) Since
the operators V' p(0) differ from the 1"

p only in the
replacement of Gq by G, we obtain, as the analog of
Eq. (3.10)

(0) (+) g (0) (—)

g" (o)(—)LG (+) G (—)jq (o)(+) (3 12)
CL~S, b, C80

If we now take matrix elements of this equation with

respect to the states C and C, we find that the ampli-
tudes T p") satisfy the ordinary unitarity conditions,
Eq. (3.11), for the set of channels ((8,0}.If we replace
Eq. (3.5) by

It is a simple matter to verify that this system of
equations provides a formal solution of Eq. (2.31),
although the convergence properties of the series, Eq.
(3.14), has not been investigated. Note that Eq. (3.16)
preserves the feature described earlier with regard to
Eq. (3.1), namely, it is in the form of a two-body
I.ippmann-Sch winger equation; the inhomogeneous
term for the eth equation can be constructed once the
solution of the (rs 1)—th equation has been found.

Clearly, the same method can be used to solve Eqs.
(2.46) and (2.47) to determine r„. If no bound state
exists for the (1,3) pair, say, then the Feinberg-Pais
procedure applied to Eq. (2.47) reduces to the ordinary
multiple scattering expansion

T..«) = (C., v'..«)C,)y (C.,T„C,), (3.13) r8 T12+T12GoT18GoT12+ ' ' '
~ (3.17)

i.e., if we includ, e the disconnected part, then Eq. (3.11)
is no longer satisfied for the inelastic amplitudes, al-

though it remains valid for the elastic amplitude
((2=p = (8). However, the generalized unitarity relations,
which are formulated in terms of the connected ampli-

tude, are still satisfied for the set of entrance and exit
channels ((8,0}.

The simplifying feature of our approximation, Eq.
(3.1), is the presence of the operator G, which is es-

sentially a two-body propagator; the (2,3) bound system
behaves kinematically as a single particle. Thus, V', (')

is determined by a two-body equation, of the Lipp-
mann-Schwinger type, in which v, appears as an "opti-
cal potential. " Of course, we still must determine v, .
Short of solving the integral equations for 7, exactly,
we expect that this approach will be most useful when

multiple scattering effects are unimportant, so that
r =T12+T18. Equation (3.1) then leads to a summa-

tion of an infinite subclass of terms which are iterations
of the basic impulse approximation amplitude. Ke shall
have more to say about approximations for 7-„ in the
following.

It is interesting to observe that with the aid of a
method proposed by Feinberg and Pais' in connection
with their peratization theory, the approximation de-
scribed above can be exhibited as the leading term in

an iteration scheme to determine the exact operator
. The method, stated in the context of the present

problem, provides a solution of the integral equation for
1„in the series form

(3.14)

The operators V, (") are obtained recursively from the
series of integral equations

It is, of course, just the presence of bound states which
casts doubt on the validity of this type of expansion,
and which would favor the use of the integral equations
we have described to sum infinite subclasses of terms.

B. Separable Potential Model

As an alternative to the above procedure we now
describe an approximation scheme based on the intro-
duction of separable potentials. I et X23 represent the
bound-state wave function for the (2,3) pair, with
eigenenergy —ess. (For simplicity we asume that only
one bound state exists. ) We consider the separable
potential

228"=(28~)(28)(X28)ass/(&28~228) &28), (3 18)

where the use of a lower case e is meant to indicate
that e23 operates in a space of two particles while V23

operates in a three-particle space. The transition oper-
ator f23') is easily constructed. Since we are concerned
with a three-body problem, we state the result in terms
of the corresponding operator T23('). %e find that

T»"(E)= S.I'28IC'. (-))

$(Z E„ess)——
X (C'a(a)

~
&28, (3 19)

jV

where

C&(s)j '=
(22r)8

gs(1 )
X — (3.20)

L (A'/ass) k' —s1L(5'/2)t828) k'+ essf

(pss is the reduced mass of the two-body system) and

g(k) = (1(~228~ X„). (3.21)

+aa raa+raaoa9 aa (3.15) Ke note the relation

+aa raafG28 Go Gaj+aa +raaGa +aa

28& 1. (3.16)
"R.Blankenbecler, Phys. Rev. 122, 983 (1961).

N( es,)=1, - (3.22)

which is easily deduced from Eqs. (3.20) and (3.21)
along with the normalization condition (x ~x)= 1.
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+aa &aa+ &aaGa ~aa

with G '& defined by

(3.23)

We now replace T» in Eq. (2.31) by T»&*&, giving
rise to an approximate transition operator 9" &'& deter-
mined by

k)

k

Fax

kf

-k)

G.& &=a.r»( &6.. (3.24)
+ r&s ~

Equation (3.23) shares the attractive feature of our
previous approximation, Eq. (3.1), in that G &s& behaves
kinematically as a two-body propagator. In fact, if we
define the state vector

4'.(.l'+'(&) =G."'(~)l'»C" (-)(&-) (3 25)

which satisfies the "on-shell" relation

(3.26)

we obtain from Eqs. (3.19) and (3.24) the expression

G "(~)= S.l
C'.(.)"'(&))

k;

(b)

+ ~ ~ ~

(c)

(a)

X(E E„ess)— —
(C.(-l' '(&) I, (327)

jV jV

r2(s) = Trs(sl+Tr (slG&(sl& (sl (3.28)

(s) —T (sl+T (slG (s)&~ isl (3 29)

so that an approximation to the operator r„can be
constructed by solving two-body integral equations with
relatively simple inhomogeneous terms. When all three
particles are identical, the integral equations become
particularly simple in form; they in fact reproduce a
model introduced recently by Amado, " as we have
shown. " The use of separable potentials to simplify
the three-body equations has been discussed previously
by Mitra" from a different point of view.

C. Unitary Strip Approximation

A study of the three-body problem in the approach
described here should be of some value even when the

"R.D. Amado, Phys. Rev. 132, 485 (1963).
'3 L. Rosenberg, Phys. Rev. 134, 8937 (1964).
's A. N. Mitra, NucL Phys. 32, 529 (1962).

which may be compared with G, as given by Eq. (2.9).
It might be anticipated that at large scattering energies
the operators V' &'& and V', &'& should not differ appreci-
ably. In fact, to the extent that we need retain only
those contributions to the integrals in Eqs. (2.9) and
(3.27) for which E„=Ewe see that by virtue of Eqs.
(3.22) and (3.26) the difference between G, &'& and G,
vanishes. It is clear that since the separable potential
V23&') is Hermitian the unitarity relations will be pre-
served. We also note that the Feinberg-Pais iterative
procedure can be formulated just as in Eqs. (3.14)-
(3.16), with the replacement of G, by G, &'l. As a fina]
remark let us suppose that V~2 and V~3 can each support
a bound state. Then Eqs. (2.46)—(2.47) can be replaced
by

(e)

FIG. 1. Leading graphs in the diagrammatic expansions of the
elastic and break-up amplitudes. Solid lines refer to the heavy
particles and dashed lines to the light particle. The double line
(one solid, one dashed) represents the bound two-body system.

potential picture breaks down. The reason for this lies
in the formal similarity of the integral equations derived
here for the potential model and those approximate
integral equations which can be written down on the
basis of unitarity and analyticity considerations in the
relativistic theory. In the latter category we have in
mind, in particular, the multiparticle X/D relations
discussed by Blankenbecler" and others in which a
proper treatment is sought for the effects of the coupling
of elastic and inelastic channels; this coupling must
exist by virtue of the unitarity conditions. In order to
emphasize this similarity we will now show that by
taking the Fourier-Bessel transform of an approximate
version of the integral equations obtained above we are
led to a tractable set of equations which can be com-
pared with a set derived earlier by Baker and Blanken-
becler. ' These authors used the X/D method to study
proton-proton reactions in the peripheral collision model.
It will be seen that the two sets are formally identical
once allowance is made for the difference in kinematics,
and the correspondence between relativistic form factors
and nonrelativistic bound-state wave functions is
recognized. "

Let us consider a case where particles 1 and 2 are
identical, of mass M, and particle 3 has mass m, with
m(M. The solution of the integral equation for the
elastic amplitude Lwhich is actually a sum of direct
(T„) and exchange (Ts,) terms] can be interpreted
as the sum of an infinite set of graphs, the 6rst few of

'SR. Blankenbecler, M. Goldberger, and F. Halpern, Nucl.
Phys. 12, 647 (1959); R. Blankenbecler and L. F. Cook, Phys.
Rev. 119, 1745 (1960).
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which are pictured in Fig. 1. The leading graphs for the
inelastic amplitude are also shown. We wish to develop
an approximation scheme which will be valid in the
domain of high-energy and low-momentum transfer.
In this case a useful criterion for the relative importance
of diRerent graphs is the nearness to the physical region
of singularities of the amplitude in the complex t plane,
where t is the square of the momentum transfer. We
assume that the amplitude has a branch cut on the
negative t axis running from t = —~ to a threshold value
to, and that other singularities in t are either not present
or have little influence on the physicaI amplitude. I.et
the threshold values for graphs (b) and (c) in Fig. 1 be
denoted by to,~~ and to„„respectively. We assume the
binding energy, c, of the target system to be small
enough so that these threshold values are of the
"anomalous" type, depending on e and not on the
potential range. (This is the case for the deuteron, e.g.)
Using methods described previously" we find /here our
study is based on Eq. (3.35)] that

t p„/t p pr (m/M)'(——(1. (3.30)

Consequently, we omit from our sum of graphs all those
which involve heavy particle transfer, as in Fig. 1(b).
Furthermore, the Born term, Fig. 1(a), is dominated
by singularities in the exchange momentum transfer
variable u= {k,+t M/(m+M))kr}' close to the physi-
cal threshold 10=0.In the domain of interest, namely,
k;=k~ and k,'))e, I will be large. We therefore omit
this graph (and iterations of it) from our sum; the
general term in this diagrammatic expansion will in the
form of a chain, each link of which is of the type shown
in Fig. 1(c).We now make the additional approximation
of replacing the propagator G,T»G, by G, in the integral
equation which sums these diagrams. This approxima-
tion can also by justified by the "nearness of singulari-
ties" argument. Because of its dependence on the
bound-state wave function, the propagator G intro-
duces the nearby "anomalous" threshold singularities
mentioned above; the neglected part of the propagator
is responsible for more distant singularities. Our use of
dispersion theory is con6ned to the above qualitative
considerations (the strip approximation).

The off-the-energy-shell elastic amplitude is denoted
by P»(kt, k;; s). For convenience in this problem, where
identical particles are present, we depart from our
earlier channel notation. Here the index 2 refers to the
channel in which one of the heavy particles is free and
the other bound, while the index 3 will refer to the
channel in which all three particles are free. The
rnomenta k, and kr refer to the heavy particle in initial
and 6nal states, respectively, while s is related to the
total energy E according to

We have the on-shell relation

t P(kf,k;; s))s,.s sf', =f(s,t), (3.33)

where t= (kf —k;)' and f(s,t) is the physical elastic-
scattering amplitude. According to our simplifying
assumptions the integral equation for F» takes the form

Psp(kt, k;; s) =Pss&'&(kf, k;; s)+
(2s )'

Xppso&(kt, k; s) Pss(k, k;; s) . (3.34)
k' —s—ig

Here F22&", the impulse approximation, corresponds to
Fig. 1(c) and is given by

Pppo& (kt)k, ) s)

1 (2t

kr (It' (2s)s m+M 9 m+M

M M
Xt~ kf+ k, k,+ k; P. tt' ~, (—3.—35)

m+M m+M 2y )
where &t(k) is the bound-state wave function in mo-
mentum space and t(k,k'; s) is related to the two-body
t operator by

(k~ t(s)
~

k') =t(k,k' s) (3.36)

Once the elastic amplitude is determined the break-up
amplitude may be obtained from the formula

Pss(kt, kr', k;; s)

=Pppo&(kf kf'& k;& s)+ Pss&'&(kt kf', k; s)
(2s)'

Pss(k, k;; s), (3.37)
k' —s—ig

where F32") corresponds to the impulse approximation
of Fig. 1(e) and takes the form

P»o&(kf, kg',.k;; s)

= ——(2&j/i't ') x((M/m+M)k;+k&')
4x

Xt(kg+(M/m+M)kr', k;+(M m/+M)kf',

Z —(&t /2p)kr' ) (3.38)

The time-reversed amplitude is given by

P»(kr, k;,k; s)

(&&t'/2p) s—e=E, ,

p = (nz+M)/(m+2M) .
"L.Rosenberg, Phys. Rev. 129, 968 (1963).

(3.31)

(3.32)

=Pss&'&(kr,.k;,k; s)+ Pss(kr, k; s)
(2s)'

X P»&»(k;k;, k;s). (3.39)
k' —s—ig
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Finally, the fully connected part of the amplitude gatorsdifferonlyinthemannerin which theamplitudes
describing the collision in which three particles are free are continued oG the energy shell.
in initial and 6nal states is given by The final step is the introduction of the Fourier-Bessel

representation. We write6

Fsso(kr, kr', k, ,k; $) = Fss&'& (kf,kg' j k; $)
(2s.)'

F„(k;k;,k; $).
0 —$—zg

Fg IrI——,;($,f; wg), (3.45)

where the v;; are the remaining scalar variables needed
to specify the amplitude completely, and assume that
the representation

+I($)

with

dQ~Fss"'(kf, k j $)Fss(k, k; j $), (3.41)
2

Iml($) = p, ($) =$'~'/4s . (3.42)

Equations (3.37), (3.39), and (3.40) can be modifmd in
a similar way. If we wished complete correspondence
with the Baker-Blankenbecler theory we would at-
tempt to write

I($)=
"d$' ps($')

7l $ —$
(3.43)

While this form is finite for relativistic kinematics, it
diverges in our case. We therefore introduce a zero-
energy subtraction and write

"d$' ps($')
I($)=$ — = ips($),

p 7l $ —$$
(3.44)

which corresponds simply to the replace»ient of the two-
body propagator G by its imaginary (on-shell) part.
At this stage we note that use of the propagator G, ')
of Sec. 33 rather than G, would have led to the same
result since, as we pointed out above, the two propa-

At this point it is possible to introduce additional
simplifying approximations which bring our results in
correspondence with the Baker-Blankenbecler theory.
We observe that alterations of the two-body propagator
which preserve its imaginary part will also preserve the
unitarity property of the amplitudes. Furthermore, one
might expect that at high energies it is the imaginary
part which is most important. We therefore replace Eq.
(3.34) by

Fss(kr, k; j $)=Fss~'& (kg, k;; $)

&gg ($)t j 'vij) = bdbJp(b'av")H;;($, b; v;;) (3.46)

is valid. The Fourier-Bessel transforms of the amp1i-
tudes F,,"' are denoted by 8,;($,b; v;;). H we employ
the high-energy approximation of Blankenbecler and
Goldberger, " our integral equations, in the new repre-
sentation, take the simple form

Hss($)6) =8ss($pl)/L1 I($) 8ss( $)5) j) (3 47)

H, s($,b; rtss) =8,s($,b j ass) t 1+I($)H„($,b)j, (3.48)

H28($P j ass) L1+H22($yf)I($)]828($)f j r28) 1 (3 49)

Hss($, b; nss) 8s2=($pl j vss)I($)Hss($, 5j vss) ~ (3.50)

which are identical in form with those proposed in Ref.
6. In our model the input amplitudes 8;; are given ex-
plicitly, in terms of the ordinary impulse approximation.

If particles 1 and 2 were lighter than particle 3, the
arguments outlined above, in which heavy particle
transfers are ignored, would again lead, to a unitary
strip approximation which sums all iterations of the
leading graph shown in Fig. 1(b). (In this case the solid
line would refer to the light particle and the dashed line
to the heavy particle. ) By making use of the above-
mentioned correspondence between bound-state wave
functions and relativistic vertex functions, "this scheme
could be applied to peripheral interactions (or interac-
tions in the higher partial waves) for the pion-nucleon
system in which only two- and three-body intermediate
states are retained. We would then obtain an alternative
to the dispersion-theoretic approaches to this problem
which have already been attempted. "

"See Eq. (3.9) in R. Blankenbecler and M. L Goldberger,
Phys. Rev. 126, 766 (1962)."L.F. Cook and B.W. Lee, Phys. Rev. 127, 283 (1962); J. S.
Ball, W. R. Fraser, and M. Nauenberg, iMd. 128, 478 (1962).


